1	This	s que	estion looks at properties of transition elements, ions and complexes.
	(a)	Wh	at is the oxidation number of Cr in the complex ion $[CrOCl_5]^{2-}$?
			[1]
	(b)	Wri	te the equation for a reaction catalysed by a named transition element, compound or ion.
		Equ	uation:
		Cat	alyst:[1]
	(c)	An	octahedral complex ion ${\bf A}$, ${\bf C_9H_{30}N_6Ni^{3+}}$, exists as two optical isomers.
		In c	complex ion A , Ni ³⁺ is bonded to three molecules of a bidentate ligand B .
		(i)	State what is meant by a bidentate ligand.
			[1]
		(ii)	What is the molecular formula of the bidentate ligand B ?
			[1]
		(iii)	Draw a possible structure for B and explain how B is able to act as a bidentate ligand.
			[2]
		(iv)	What is the coordination number of complex ion A ?
			[1]

(v)	(v) Complete the 3-D diagrams of the shapes of the optical isomers of complex ion A .		
	You can show the bidentate ligand simply as		
	Manage Ni Ni Ni Ni Ni		
	[1]		
(d)	Describe the reactions of EITHER aqueous copper(II) ions OR aqueous cobalt(II) ions with: • aqueous sodium hydroxide • excess aqueous ammonia • hydrochloric acid.		
	In your answer you should link observations with equations.		

[Total: 14]

ions. Most d-block elements are also classified as transition elements.			
(a)	Ехр	lain why two of the Period 4 d-block elements (Sc–Zn) are not also transition elements.	
	In y	our answer you should link full electron configurations to your explanations.	
			••
		[6	i]
(b)		cobalt(III) ion, ${\rm Co^{3^+}}$, forms a complex ion A with two chloride ligands and twanediamine, ${\rm H_2NCH_2CH_2NH_2}$, ligands.	0
	The	structure of ethanediamine is shown below.	
		H_2N NH_2	
	(i)	Explain how ethanediamine is able to act as a bidentate ligand.	
		[2	<u>?]</u>
	(ii)	Write the formula of complex ion A .	
		[1	1]
	(iii)	What is the coordination number of cobalt in complex ion A ?	
		[1]

optical isomer.	
Draw 3-D diagrams to show the three stereoisomers.	
	[3]
	[0]
	optical isomer.

(c)		e equilibrium reaction for the transport of oxygen by haemoglobin (Hb) in blood can be resented as equation 5.1 .
		$Hb(aq) + O_2(aq) \rightleftharpoons HbO_2(aq)$ equation 5.1
	(i)	Explain how ligand substitution reactions allow haemoglobin to transport oxygen in blood.
		[2]
	(ii)	Write an expression for the stability constant, $K_{\rm stab}$, for the equilibrium involved in the transport of oxygen by haemoglobin.
		Use the simplified species in equation 5.1 .
		[1]
	(iii)	In the presence of carbon monoxide, less oxygen is transported in the blood.
		Suggest why, in terms of bond strength and stability constants.
		[2]
		[Total: 18]

3 Iron is heated with chlorine to form an orange-brown solid, A.

Solid **A** is dissolved in water to form an orange–brown solution, **X**, containing the complex ion $[Fe(H_2O)_6]^{3+}$.

Separate portions of solution X are reacted as shown in Experiments 1-4 below.

Experiment 1

Aqueous sodium hydroxide is added to solution **X**. An orange–brown precipitate **B** forms.

Experiment 2

Excess zinc powder is added to solution X and the mixture is heated. The excess zinc is removed leaving a pale-green solution containing the complex ion C and aqueous Zn^{2+} ions.

Experiment 3

An excess of aqueous potassium cyanide, KCN(aq), is added to solution **X**. The solution turns a yellow colour and contains the complex ion **E**. **E** has a molar mass of 211.8 g mol⁻¹.

Experiment 4

An aqueous solution containing ethanedioate ions, $(COO^-)_2$, is added to solution **X**. A coloured solution forms containing a mixture of optical isomers **F** and **G**.

The structure of the ethanedioate ion is shown below.

(a) Write an equation for the formation of solid A.

			[1]
(b)	In E	Experiment 1 , write an ionic equation for the formation of precipitate B .	
			[1]
(c)	In E	experiment 2,	
	(i)	write an equation for the formation of complex ion C	
			[2]
	(ii)	state the type of reaction taking place.	
			[1]

(d)	In Experiment 3,				
	(i)	write an equation for the formation of complex ion E			
		[2]			
	(ii)	state the type of reaction taking place.			
(0)	In E	[1]			
(e)	III E	experiment 4, optical isomers F and G are formed.			
	In y	ow the 3-D shapes of F and G . our diagrams, show the ligand atoms that are bonded to the metal ions and any overall rges.			
		[3]			
(f)	oxic	a separate experiment, iron metal is heated with potassium nitrate, KNO_3 , a strong lising agent. A reaction takes place and the resulting mixture is poured into water. A dark solution forms containing ferrate(VI) ions. The ferrate(VI) ion has a 2– charge.			
	Sug	gest a possible formula for the ferrate(VI) ion.			
		[1]			
		[Total: 12]			
		[10tai. 12]			

4 Dimethylglyoxime, DMGH, can be used to analyse nickel(II)

compounds. An excess of a solution of DMGH is added to an acidic solution of a nickel(II) compound. Aqueous ammonia is added which precipitates out a nickel(II) complex, Ni(DMG)₂, as a red solid.

A sample of a hydrated nickel(II) salt is analysed using the procedure below.

Step 1

2.50 g of the hydrated nickel(II) salt is dissolved in dilute acid.

An excess of an aqueous solution of DMGH is added.

Step 2

An excess of aqueous ammonia is added and the mixture is heated.

A red precipitate of Ni(DMG)₂ forms.

An equation for the reaction is shown below.

$$Ni^{2+}(aq) + 2DMGH(aq) + 2NH_3(aq) \rightarrow Ni(DMG)_2(s) + 2NH_4^+(aq)$$

red precipitate

Step 3

The red precipitate is filtered, washed with water, dried and then weighed.

The precipitate of Ni(DMG)₂ has a mass of 2.57 g.

Assume that all Ni²⁺(aq) ions have been converted into Ni(DMG)₂(s).

 $M[Ni(DMG)_2] = 288.7 \,\mathrm{g}\,\mathrm{mol}^{-1}.$

Step 4

A second 2.50 g sample of the hydrated nickel(II) salt is heated in a crucible to remove the water of crystallisation.

1.38 g of the anhydrous salt remains.

(a)	Complete the electron configurations	s of nickel as the element and in the +2 oxidation state).
	nickel as the element:	1s ² 2s ² 2p ⁶	
	nickel in the +2 oxidation state:	1s ² 2s ² 2p ⁶	[2]

(b) The structure of $\mathrm{Ni(DMG)}_2$ is shown below.

(1)	State and explain the role of ammonia in step 2 of this experiment.	
		[1]
(ii)	State the coordination number of Ni in Ni(DMG) ₂ .	
		[1]
(iii)	Why does the Ni(DMG) ₂ complex have no overall charge?	
		[1]
(iv)	Draw the structure of dimethylglyoxime, DMGH.	

Your answer must show relevant working.	
	[7]
	[Total: 13]

(c) Determine a possible formula of the hydrated nickel(II) salt.